Math 2J - 44480

William Holmes
Sept. 28, 2012

My Information

- www.math.uci.edu/~wrholmes
- Navigate to the teaching tab and then to the Math 2J link.
- wrholmes@uci.edu
- Place "M2]" in the title of any e-mails, I use e-mail filters.

About me

- Aerospace engineer by trade.
- Aircraft engine design and testing.
- PhD in mathematics
- Primary work in mathematical biology.

Course

- Infinite Series and Basic Linear Algebra
- First part - Linear Algebra
- ~5-6 weeks
- Second part - Sequences and Series
- ~4-5 weeks

Linear Algebra

- The study of systems of linear equations.
- Example

$$
\begin{aligned}
-x_{1}+2 x_{2} & =1 \\
2 x_{1}-x_{2} & =1
\end{aligned}
$$

Why do we care?

- Linear systems are used to describe many things.
- Linear systems are basically the only systems we can solve!
- Nonlinear systems are very hard.

Who uses it?

- Computer Scientists
- Applied Mathematicians
- Engineers
- Statisticians

Applications

- Google search algorithm
- Statistics (ANOVA)
- Facebook
- Graphics processing - video games
- Computing engineering stresses
- Just about anything on a computer

Linear Equation

$$
\begin{gathered}
2037.6 x_{1}-x_{2}+12 x_{3}=4 \\
x_{1}-x_{2}+77 x_{3}=0 \\
.001 x_{1}+x_{3}=96
\end{gathered}
$$

$$
\begin{aligned}
2 x_{1}-3 x_{2} & =7 \\
-4 x_{1}+6 x_{2} & =11
\end{aligned}
$$

$$
x_{1}=12
$$

General Linear System

$$
\begin{aligned}
& a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n-1} x_{n-1}+a_{1, n} x_{n}=b_{1} \\
& a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n-1} x_{n-1}+a_{2, n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n-1} x_{n-1}+a_{m, n} x_{n}=b_{m}
$$

$a_{j, i}=$ Coefficient, Provided
 $b_{j}=$ Constant, Provided
 $x_{i}=$ Variable, Sought

Example

$$
\begin{aligned}
2 x_{1}-3 x_{2} & =7 \\
-4 x_{1}+6 x_{2} & =11
\end{aligned}
$$

$$
\downarrow
$$

$$
\begin{aligned}
& a_{1,1}=2 \\
& a_{2,1}=-4
\end{aligned}
$$

$$
a_{1,2}=-3
$$

$$
b_{1}=7
$$

$$
a_{2,2}=6
$$

$$
b_{2}=11
$$

Nonlinear System

- Everything else

$$
\begin{aligned}
x_{1}-2 x_{2}^{5} & =7 \\
\sin \left(x_{2}\right) & =0
\end{aligned}
$$

$$
\begin{array}{r}
x_{1}-2 x_{1} x_{2}=7 \\
-3 x_{1}+2 x_{2}=0
\end{array}
$$

Solution of a linear

system

- A collection of numbers $x_{1}, x_{2}, \ldots, x_{n}$ that satisfy ALL equations

Example

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=9 \\
2 x_{1}+4 x_{2}-3 x_{3}=1 \\
3 x_{1}+6 x_{2}-5 x_{3}=0 \\
\downarrow \\
x_{1}=1, x_{2}=2, x_{3}=3
\end{array}
$$

- This is referred to as a 3×3 system

Terminology

- A system is said to be " $m \times n$ " if there are "m" equations and " n " variables / unknowns.

Terminology

- A system is said to be "consistent" if it has at least one solution.
- A system is said to be "inconsistent" if it has no solutions.

Inconsistent Example

$$
\begin{aligned}
& x_{1}+x_{2}=2 \\
& x_{1}+x_{2}=3
\end{aligned}
$$

There is no x_{1}, x_{2} that satisfies both of these.

Terminology

- Two systems are said to be "equivalent" if: I. They have the same number of variables. 2. They have the same solutions.
- Equivalent systems are effectively the same system written in two different ways.

Equivalent Example

$$
\begin{array}{r}
x_{1}+x_{2}+2 x_{3}=9 \\
2 x_{1}+4 x_{2}-3 x_{3}=1 \\
3 x_{1}+6 x_{2}-5 x_{3}=0
\end{array}
$$

$$
\begin{aligned}
x_{2}+x_{2}+2 x_{3} & =9 \\
x_{1}+x_{2} & =3 \\
x_{3} & =3
\end{aligned}
$$

- These are consistent. They have the same number of variables the same solution

$$
x_{1}=1, x_{2}=2, x_{3}=3
$$

